Texture signals in whisker vibrations.
نویسندگان
چکیده
Rodents excel in making texture judgments by sweeping their whiskers across a surface. Here we aimed to identify the signals present in whisker vibrations that give rise to such fine sensory discriminations. First, we used sensors to capture vibration signals in metal whiskers during active whisking of an artificial system and in natural whiskers during whisking of rats in vivo. Then we developed a classification algorithm that successfully matched the vibration frequency spectra of single trials to the texture that induced it. For artificial whiskers, the algorithm correctly identified one texture of eight alternatives on 40% of trials; for in vivo natural whiskers, the algorithm correctly identified one texture of five alternatives on 80% of trials. Finally, we asked which were the key discriminative features of the vibration spectra. Under both artificial and natural conditions, the combination of two features accounted for most of the information: The modulation power-the power of the part of the whisker movement representing the modulation due to the texture surface-increased with the coarseness of the texture; the modulation centroid-a measure related to the center of gravity within the power spectrum-decreased with the coarseness of the texture. Indeed, restricting the signal to these two parameters led to performance three-fourths as high as the full spectra. Because earlier work showed that modulation power and centroid are directly related to neuronal responses in the whisker pathway, we conclude that the biological system optimally extracts vibration features to permit texture classification.
منابع مشابه
Neuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملNeuronal basis of tactile sense in the rat whisker system
Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...
متن کاملTexture signals in whisker vibrations 1 Dynamic Translation of Surface Coarseness into Whisker Vibrations
Rodents in their natural environment use their whiskers to distinguish between surfaces having subtly different textures and shapes. They do so by actively sweeping their whiskers across surfaces in a rhythmic motion. To determine how textures are transformed into vibration signals in whiskers and how these vibrations are expressed in neuronal discharges, we induced active whisking in anaesthet...
متن کاملGood vibrations. Focus on "texture signals in whisker vibrations".
Roughly 20 years ago Valentino Braitenberg published a book on vehicles—a treatment of the amazingly complex behavior of a variety of very simple machines (Braitenberg 1984). This approach was inspired by the “law of uphill analysis and downhill invention.” Accordingly it is easier to design a mechanism to do something from scratch than to figure out just how nature has contrived to do it. Alth...
متن کاملNeuronal Encoding of Texture in the Whisker Sensory Pathway
A major challenge of sensory systems neuroscience is to quantify brain activity underlying perceptual experiences and to explain this activity as the outcome of elemental neuronal response properties. Rats make extremely fine discriminations of texture by "whisking" their vibrissae across an object's surface, yet the neuronal coding underlying texture sensations remains unknown. Measuring whisk...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 95 3 شماره
صفحات -
تاریخ انتشار 2006